Age Estimation Using Classifiers Artificial Neural Network and Support Vector Machine Based on Face Images
نویسندگان
چکیده
The most prominent challenge in the facial age estimation is a lack of sufficient and incomplete training data. Aging is slower and gradual process, therefore, faces near close ages look quite similar this can allow us to utilize the face images at neighbouring ages with modeling to a particular age. There are many potential applications in age-specific human-computer interaction for security control and surveillance monitoring. In the last few years biologically inspired features are used for human age estimation for face images but recently more focus put on a method like scattering transform. The proposed approach exploits scattering transform gives more information about features of the facial images. An efficient descriptor consisting scattering transform which scatters the gabor coefficients and pulled with Gaussian smoothing in multiple layer and is evaluated for facial feature extraction. These extracted features are classified using support vector machine and artificial neural network. Results for face based age estimation obtain by the artificial neural network is more effective than support vector machine.
منابع مشابه
A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملGender and Age Estimation Using Face Images
In this study, I present a real-time gender and age estimation approach that I developed for the course project of Artificial Neural Networks. For these tasks, I employed a local appearance-based representation using Discrete Cosine Transform (DCT), which has been shown to be very effective in realtime processing and robust against changes caused by light and facial expressions. Using these fea...
متن کاملEstimation of Iron concentration by using a support vector machineand an artificial neural network - the case study of the Choghart deposit southeast of Yazd, Yazd, Iran
Estimation of the metal value in the metallic deposits is one of the important factors to evaluate the deposits in exploration studies andmineral processing. Therefore, one accurate estimator is essential to obtain a fine insight into the accumulation of the ore body. Thereare geostatistical methods for the estimation of the concentration of iron which performance of these models is complexity ...
متن کاملBubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کاملVolumetric soil moisture estimation using Sentinel 1 and 2 satellite images
Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017